V030454
Sentry-RMS Configuration and Installation Manual
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>2</td>
</tr>
<tr>
<td>List of Figures</td>
<td>5</td>
</tr>
<tr>
<td>1 Overview</td>
<td>8</td>
</tr>
<tr>
<td>2 Terminology</td>
<td>9</td>
</tr>
<tr>
<td>2.1 Acronyms</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Safety Symbols</td>
<td>10</td>
</tr>
<tr>
<td>3 Browser Requirements</td>
<td>11</td>
</tr>
<tr>
<td>4 Hardware Installation Section</td>
<td>11</td>
</tr>
<tr>
<td>4.1 Sentry-RMS Wall Mounting</td>
<td>12</td>
</tr>
<tr>
<td>4.1.1 Steps for Mounting the Sentry-RMS</td>
<td>16</td>
</tr>
<tr>
<td>4.2 Providing Power to the Sentry-RMS</td>
<td>17</td>
</tr>
<tr>
<td>4.2.1 Steps for providing power to the Sentry-RMS</td>
<td>18</td>
</tr>
<tr>
<td>4.3 Network Ethernet Installation (hardware only)</td>
<td>19</td>
</tr>
<tr>
<td>4.3.1 Steps for installing Ethernet cables</td>
<td>19</td>
</tr>
<tr>
<td>4.4 Mounting Additional Cameras</td>
<td>22</td>
</tr>
<tr>
<td>4.4.1 Steps for Mounting Additional Cameras</td>
<td>23</td>
</tr>
<tr>
<td>4.5 Camera Electrical Setup (as applicable)</td>
<td>26</td>
</tr>
<tr>
<td>4.5.1 Steps for the Electrical Setup of the Cameras to the Sentry-RMS</td>
<td>27</td>
</tr>
<tr>
<td>4.5.2 The following is the bandwidth requirements for camera image quality:</td>
<td>29</td>
</tr>
<tr>
<td>4.6 Detaching Camera from Sentry-RMS chassis (as applicable)</td>
<td>30</td>
</tr>
<tr>
<td>4.6.1 Steps for removing an Sentry-RMS chassis camera</td>
<td>30</td>
</tr>
<tr>
<td>4.7 Installing the Primary Backup Battery</td>
<td>35</td>
</tr>
<tr>
<td>4.8 Wiring the User-Provided Input and Output Devices to the Sentry-RMS</td>
<td>37</td>
</tr>
<tr>
<td>4.8.1 The Sentry-RMS has terminal strips (see Figure 26) for interfacing to TIDs, external alarm sensors, and external alarm panels.</td>
<td>37</td>
</tr>
<tr>
<td>4.8.2 Sentry-RMS Inputs</td>
<td>38</td>
</tr>
<tr>
<td>4.8.3 Sentry-RMS Outputs to Alarm Panel</td>
<td>51</td>
</tr>
<tr>
<td>4.8.4 Plug in the primary backup cable into middle power jack, found at the bottom of the green, printed circuit board (see Figure 36).</td>
<td>56</td>
</tr>
</tbody>
</table>
8.1 Electical Requirements

8.2 Water ingress protection rating
8.3 Storage Temperature

8.4 Operating Temperature

8.5 Atmospheric Pressure (Altitude)

8.6 Humidity

9 Maintenance & Servicing

9.1 Radiation Detector Replacement Instructions

- **9.1.1 Radiation Detector Removal**

- **9.1.2 Radiation Detector Cover Installation**

9.2 Instructions for Cleaning

9.3 Service and Repair

9.4 Contact Information

9.5 Warranty

9.6 Replacement Battery

9.7 Replacement Fuses Specifications

9.8 Sentry-RMS Open Ports

9.9 Radiation Detection Procedure
List of Figures

Figure 1 - Configuration Tool flow diagram ... 8
Figure 2 - Sentry-RMS, mounting bracket, backup battery, cameras 12
Figure 3 - Water-tight sealing washer and Nyloc nut .. 13
Figure 4 - Mounting Frame Dimensions .. 14
Figure 5 - Right, lower mounting stud, water-tight washer and Nyloc nut 16
Figure 6 - Sentry-RMS terminal box ... 19
Figure 7 - Network Ethernet jacks .. 20
Figure 8 - Use Ethernet cable for Maintenance ... 21
Figure 9 - Camera, camera base, and camera enclosure .. 22
Figure 10 - Camera mounting bracket with threaded base and cutaway for cord 23
Figure 11 - Mounting bracket, camera base, camera enclosure, and camera 25
Figure 12 – Ethernet coupler ... 26
Figure 13 - POE splitter (power cable and Ethernet jack) .. 26
Figure 14 - Camera connected to Ethernet cable and splitter .. 27
Figure 15 - Ethernet camera jacks 1 – 4 ... 28
Figure 16 - Camera power jacks ... 29
Figure 17 - Camera, Sentry-RMS chassis, and camera cord .. 30
Figure 18 - Camera cable, Ethernet jacks and power jacks ... 31
Figure 19 - Removing camera from mounting bracket on Sentry-RMS chassis 32
Figure 20 - Removing camera mounting bracket ... 33
Figure 21 - Placing water-tight gasket and camera plate on Sentry-RMS chassis 34
Figure 22 - Attaching hex nuts on to camera plate studs .. 34
Figure 23 - Primary backup battery .. 35
Figure 24 - Battery in Sentry-RMS Chassis ... 36
Figure 25 - Battery strapped into Sentry-RMS chassis .. 36
Figure 26 - Terminal blocks J1, J2, J6, J7, J8, and J14 ... 37
Figure 27 - Sentry-SEAL external TID Device .. 39
Figure 28 - Example of Sentry-SEAL Configuration with Smart Interface 41
Figure 29 - Example of Sentry-SEAL Configuration with EOL Resistor Interface (Normally Open) – Seal must use Normally Open configuration when used in EOLR configuration ... 42
Figure 30 - Sentry-SEAL Wireless Receiver and Sentry-SEAL Wireless Transmitter 43
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 31</td>
<td>Example of Wireless Sentry-SEAL Receiver with Smart Interface</td>
<td>44</td>
</tr>
<tr>
<td>Figure 32</td>
<td>Example of Wireless Sentry Seal Receiver with EOL Resistor Interface (Normally Open) – Seal must use Normally Open configuration when used in EOLR configuration</td>
<td>45</td>
</tr>
<tr>
<td>Figure 33</td>
<td>Example of Wiring External Input Alarms (Normally Open)</td>
<td>46</td>
</tr>
<tr>
<td>Figure 34</td>
<td>Wiring of Alarm Outputs</td>
<td>52</td>
</tr>
<tr>
<td>Figure 35</td>
<td>Example of Wiring Alarm Outputs</td>
<td>53</td>
</tr>
<tr>
<td>Figure 36</td>
<td>Backup battery power jack in the middle</td>
<td>56</td>
</tr>
<tr>
<td>Figure 37</td>
<td>Back Plate Pressure Button</td>
<td>57</td>
</tr>
<tr>
<td>Figure 38</td>
<td>Primary and Secondary Ethernet jacks</td>
<td>59</td>
</tr>
<tr>
<td>Figure 39</td>
<td>SCT opening screen</td>
<td>60</td>
</tr>
<tr>
<td>Figure 40</td>
<td>System username credentials window</td>
<td>60</td>
</tr>
<tr>
<td>Figure 41</td>
<td>System administrator credentials screen</td>
<td>61</td>
</tr>
<tr>
<td>Figure 42</td>
<td>LDAP certificate prompt</td>
<td>61</td>
</tr>
<tr>
<td>Figure 43</td>
<td>SCT initial setup screen</td>
<td>63</td>
</tr>
<tr>
<td>Figure 44</td>
<td>Firmware update screen</td>
<td>65</td>
</tr>
<tr>
<td>Figure 45</td>
<td>Exporting a configuration</td>
<td>66</td>
</tr>
<tr>
<td>Figure 46</td>
<td>Importing a configuration</td>
<td>67</td>
</tr>
<tr>
<td>Figure 47</td>
<td>Alarms and Alerts tab</td>
<td>69</td>
</tr>
<tr>
<td>Figure 48</td>
<td>Naming custom inputs</td>
<td>70</td>
</tr>
<tr>
<td>Figure 49</td>
<td>Naming custom output</td>
<td>71</td>
</tr>
<tr>
<td>Figure 50</td>
<td>Mapping Alarm to outputs</td>
<td>72</td>
</tr>
<tr>
<td>Figure 51</td>
<td>Naming TID, Sentry-SEAL, and Sentry-SEALWireless devices</td>
<td>73</td>
</tr>
<tr>
<td>Figure 52</td>
<td>Naming radiation detector</td>
<td>74</td>
</tr>
<tr>
<td>Figure 53</td>
<td>Battery level alarm/alert thresholds</td>
<td>74</td>
</tr>
<tr>
<td>Figure 54</td>
<td>Naming monitoring stations and generating Security Tokens</td>
<td>76</td>
</tr>
<tr>
<td>Figure 55</td>
<td>Monitoring Station Setup</td>
<td>77</td>
</tr>
<tr>
<td>Figure 56</td>
<td>Setting the number of stations required to acknowledge alarms</td>
<td>78</td>
</tr>
<tr>
<td>Figure 57</td>
<td>Entering primary and secondary Ethernet port information</td>
<td>79</td>
</tr>
<tr>
<td>Figure 58</td>
<td>DHCP setup</td>
<td>80</td>
</tr>
<tr>
<td>Figure 59</td>
<td>State of Health settings and Sentry-RMS name</td>
<td>80</td>
</tr>
<tr>
<td>Figure 60</td>
<td>Setting passwords</td>
<td>81</td>
</tr>
<tr>
<td>Figure 61</td>
<td>Windows domain authentication for Sentry-RMS</td>
<td>83</td>
</tr>
</tbody>
</table>
Figure 62 - SMTP setup ... 84
Figure 63 - SSL setup ... 85
Figure 64 - Naming and configuring cameras 86
Figure 65 - Adding a user to receive test or email notifications 87
Figure 66 - Text Message Address .. 88
Figure 67 - Configuring user notifications 89
Figure 68 - Data retention setup .. 90
Figure 69 - Configuration history .. 91
Figure 70 - Opening screen SCT .. 92
Figure 71 - Event Viewer State of Health tab 92
Figure 72 - Expanded view of State of Health 93
Figure 73 - Alarms and Alerts tab .. 94
Figure 74 - Download alarms and alerts history screen 94
Figure 75 - Alarms and alerts history ... 95
Figure 76 - Log, including events that are not alarms or alerts 97
Figure 77 - Download all events from Log history 98
Figure 78: Remove Screws and Washers 100
Figure 79: Disconnect Radiation Detector Harness 101
Figure 80: Remove Six Screws .. 102
Figure 81: Radiation Detector PCBA Removed 103
Figure 82: Radiation Detector Installed onto Hot Plate 104
Figure 83: Radiation Detector Harness Connected to Radiation Detector .. 105
Figure 84. Radiation Detector Cover, Hardware, and Enclosure Lid Assembly .. 106
Figure 85. Radiation Detector Cover Installed 108
Sentry-RMS Configuration Manual

Setup Manual

1 Overview

The purpose of the Sentry Remote Monitoring System (Sentry-RMS) is to provide a security system focused on the protection of radiological material by sending reliable transmission of alarms to responders at security monitors and by protecting against insider threats. The Sentry-RMS measures gamma radiation dose rates from 100 mrem per hour to 1000 rem per hour.

The Sentry-RMS Configuration Tool (SCT) provides a simple process for configuration settings that interface with the Sentry-RMS (see Figure 1).

![Figure 1 - Configuration Tool flow diagram](image-url)
The Sentry-RMS Configuration Tool (SCT) is a web interface used to configure Sentry Remote Monitoring System (Sentry-RMS) devices. The SCT configures the hardware of the Sentry-RMS, and associates the Sentry-RMS with one or more monitoring stations (running the Operating Interface Software). NOTE: Another configuration tool is called the Operator Interface Configuration Tool (OICT). The OICT is used to configure the monitoring stations associated with the Sentry-RMS. A complete Sentry-RMS configuration procedure requires using both the SCT and the OICT. The SCT must be configured using this manual, then the user can set up the OICT using the Operator Interface Configuration Tool Manual.

2 Terminology

• Alarm – An alarm is a serious event that indicates an attempt to access the Sentry-RMS enclosure or Asset source, or other critical event. Alarms will only be associated with unauthorized access or scheduled maintenance. Alarm priorities vary. A high-radiation alarm has the highest priority followed by a tamper-indicating device (TID) tamper alarm.

• Alert – Alerts indicate a fault event that prevents the Sentry-RMS from providing its intended protection. Alerts are usually associated with a failure such as a loss of communications. Alerts can also be related to deliberate sabotage of the Sentry-RMS to aid an attack on the asset.

• Asset – Any machine or device containing radioactive source material designated for protection by the Sentry-RMS

• Event – Any event that generates an alarm, alert, or Sentry-RMS system message regarding a change in status

• Relay, Normally Open - Relay is open in a non-alarming state.

• Relay, Normally Closed - Relay is closed (i.e. shorted) in a non-alarming state.

• Sentry-SEAL - A device designed to be attached to a secured surface adjacent to the protected object, or mounted inside a Sentry-RMS case, or in a junction box. If an attempt is made to remove the entire protective enclosure, Sentry-SEAL will trigger an alarm.

• Sentry-SEAL Wireless - A system consisting of a Sentry-SEAL Wireless Receiver in wireless communication with a Sentry-SEAL Wireless Transmitter. This wireless Receiver and Transmitter accomplishes the same purpose as the Sentry-SEAL, the difference being that the Transmitter can be in one location, and the Receiver can be in another.
• Sentry-RMS – The “Sentry-RMS” may refer to the core Sentry-RMS hardware, or it may refer to the full Sentry-RMS architecture from the TID sensors, to the user interface platform, and ancillary network communications that connect users to Sentry-RMS data.

• Site – The site refers to a location where Sentry-RMS units are installed. A site may encompass many buildings, such as a university campus or hospital complex.

• Tamper Indicating Device – The TID is an actively-monitored seal or other sensor that detects tampering of the asset enclosure that could lead to removal of the source.

• Operator Interface – The operator interface refers to the monitoring software that personnel have to receive, assess, and acknowledge alarms.

2.1 Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCT</td>
<td>Sentry-RMS Configuration Tool</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>RMS</td>
<td>Remote Monitoring System, an alternate designation for the Sentry-RMS</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>OICT</td>
<td>Operator Interface Configuration Tool</td>
</tr>
<tr>
<td>OIS</td>
<td>Operator Interface Software</td>
</tr>
<tr>
<td>SMS</td>
<td>Short Message Service (cellular phone text messaging)</td>
</tr>
<tr>
<td>SoH</td>
<td>State of Health</td>
</tr>
<tr>
<td>SSL</td>
<td>Secure Socket Layer</td>
</tr>
<tr>
<td>TID</td>
<td>Tamper Indicating Device</td>
</tr>
</tbody>
</table>

2.2 Safety Symbols

⚠️ Potential Hazard Symbol: Documentation needs to be consulted in all cases where this symbol is used in order to determine the nature of the potential hazard
3 Browser Requirements

The SCT will work with the following browsers: Google Chrome, Firefox, and Internet Explorer (version 9 and above). For Internet Explorer 9, compatibility view should be disabled when view the webpage.

4 Hardware Installation Section

Before the Sentry-RMS can be configured in correlation with the SCT, the Sentry-RMS must be mounted to a wall and power supplied to the unit by a qualified electrician. Then, the steps for the SCT software/firmware configuration should be completed.

Following the configuration, the rest of the hardware installation should be completed, including Ethernet hookup, terminal connection of sensor inputs, and camera installation. It is crucial that a qualified person connect any user-provided Tamper Identification Devices (TIDs), alarm panel outputs, or additional alarm inputs to the Sentry-RMS, as applicable.

⚠️ It is recommended that two people mount the box to the wall, for the safety of the installers.

All of the above-mentioned steps are outlined in the following pages.
4.1 Sentry-RMS Wall Mounting

- Hardware included: Sentry-RMS chassis, backup battery, four ¼” water-tight washers, 4 Nyloc nuts (see Figure 2, Figure 3, and Figure 4).

Figure 2 - Sentry-RMS, mounting bracket, backup battery, cameras
Figure 3 - Water-tight sealing washer and Nyloc nut
Figure 4 - Mounting Frame Dimensions
- Tools needed: ratchet wrench with extension, 7/16” socket, medium flathead screwdriver, drill with bit and screw driver (bit size appropriate for size of wall anchors)
- User-supplied materials needed:
 - Wall anchors (10 total - such as lag bolts and shields for concrete or block, metal anchors for drywall, etc) sufficient in size and length and suitable for the wall construction to secure the Sentry-RMS to the wall and support the weight of the Sentry-RMS, the backup battery, as well as the NEMA 4 conduit that will be attached to the chassis of the Sentry-RMS (having a total weight of approximately 30 pounds)
 - Flat-head, counter-sunk screws (10 total - #10 size) sufficient in length to work with the wall anchors, to support the weight of the Sentry-RMS, and to fit flush in the holes that are pre-drilled in the mounting bracket
 - The holes in the mounting brackets are .201” in diameter, with an 82° counter-sink
4.1.1 Steps for Mounting the Sentry-RMS

4.1.1.1 Locate a stable place to mount the Sentry-RMS. If the device is being mounted on gypsum/sheetrock, or other fragile surface, ensure that the Sentry-RMS will have the center of the mounting bracket placed directly over something such as a wood or metal wall stud.

4.1.1.2 Mark where the 10 holes for the mounting bracket will be drilled, using the mounting bracket as a template. Be certain to line up the middle of the bracket over a secure location such as a wood or metal wall stud. Properly and safely drill holes for the wall anchors and then insert the wall anchors.

4.1.1.3 Place the mounting bracket over the holes and insert one flat-head, counter-sunk screw into each mounting hole.

4.1.1.4 Lift the Sentry-RMS up onto mounting bracket, aligning the 4 mounting studs with the holes in the chassis of the Sentry-RMS. For personal safety reasons, a second person should assist with this and the next three steps.

4.1.1.5 Place one of the provided, water-tight sealing washers on each mounting stud.

4.1.1.6 Place one of the provided Nyloc nuts on top of the washer on the mounting stud, and tighten the nut down with the 7/16” socket wrench until secure.

4.1.1.7 Repeat for the other three mounting studs (see Figure 5 for an example of the location of the right, lower mounting stud, sealing washer, and Nyloc nut).

![Figure 5 - Right, lower mounting stud, water-tight washer and Nyloc nut](image-url)
4.2 Providing Power to the Sentry-RMS

- Hardware included: Sentry-RMS terminal box and terminal screws (inside chassis of Sentry-RMS)
- Tools needed: appropriate tools for connection of NEMA 4 conduit and wiring as required by the National Electric Code (NEC) to deliver 120VAC power to the Sentry-RMS
- User-provided supplies: EMT NEMA 4 conduit – ¾” (the length should be sufficient to reach from where the Sentry-RMS will be installed to where it will meet the power supply provided by the facilities; allow for any curvature necessary to reach the power supply and still meet highest electrical code); EMT rain-tight couplings – ¾” (four couplings)
4.2.1 **Steps for providing power to the Sentry-RMS**

4.2.1.1 Follow all steps required by the National Electric Code (NEC) to deliver 120VAC power to the Sentry-RMS terminal box using 16 AWG, Stranded Wire. (see Figure 6).

4.2.1.2 It is recommended that AC power be provided to the Sentry-RMS through a dedicated, non-switched circuit breaker (at least 10 amps with max. 20 amps).

⚠️ **CAUTION:** BE SURE THAT THE AC WALL BREAKER PROVIDING POWER IS OFF WHEN INSTALLING THE Sentry-RMS.

4.2.1.3 Access the Sentry-RMS power terminals through the upper conduit knockout. Install NEMA 4 protective conduit and properly anchor to the Sentry-RMS chassis. Ethernet cable should be installed inside conduit separate from the conduit through which the AC power wiring enters. NOTE: Conduit knockouts can also be created on the bottom of the unit by a licensed electrician.
4.3 **Network Ethernet Installation (hardware only)**

- Hardware included: N/A
- Tools needed: N/A
- User-provided supplies: Ethernet cable (the length should be sufficient to reach from where the Sentry-RMS will be installed to where the cable will be plugged into the wall, router, or into a computer)

4.3.1 **Steps for installing Ethernet cables**

4.3.1.1 An Ethernet cable will be used in order to begin the setup of the Sentry-RMS Configuration Tool (SCT), and to access the SCT web page. There are two options on how the user can proceed: **Option 1 is to use DHCP on the primary Ethernet**
Communications port, or **Option 2 is to use a local connection** by using a laptop plugged into the Maintenance Port. Choose one of these options, and follow the steps listed.

4.3.1.1.1 **Option 1:** If the user is going to **use DHCP** on the Primary Ethernet Communications port, do the following:

- Take Ethernet cables and attach them to the following:
 - Rear left jack: Primary Communications computer/network cable (see Figure 7).
- Run the other end of the cable(s) up through the top of the Sentry-RMS (through a conduit knockout hole) and insert the Primary Ethernet cable into the site network router or switch.
- When beginning the software portion of setting up the Sentry-RMS (see Section 5 of this manual), assign a fixed IP address for the Primary Communications port on the site DHCP server using the first MAC address found on the sticker inside the Sentry-RMS box.
 - If the user is going to have a Secondary Communications port, repeat this process for the Secondary port (Rear middle jack) using the second MAC address (see Figure 7). The Secondary fixed IP address must be on a separate subnet.

![Network Ethernet jacks](image)

Figure 7 - Network Ethernet jacks

4.3.1.1.2 **Option 2:** If the user is going to **use a local connection** using a laptop plugged into the Maintenance Port, do the following, when proceeding with the software setup of the Sentry-RMS (see Section 5 of this manual):

- Ensure that the laptop is running with automatic or DHCP assigned addressing.
• Connect the Ethernet cable into the Maintenance port, and then into the user’s laptop (see Figure 8).
 o **IMPORTANT**: Do not use the POE splitter cable when connecting a laptop to the Maintenance Port. This may damage the laptop’s Ethernet card. Instead, use a standard Ethernet cable between the laptop going directly into the Sentry-RMS Maintenance Port (see Figure 8).
 o **NOTE**: After software setup is complete (see section 7.1), the setup computer can be disconnected.

![Ethernet Cable for Use During Maintenance](image)

Figure 8 - Use Ethernet cable for Maintenance
4.4 Mounting Additional Cameras

- Tools needed: Phillips screwdriver (medium), drill with bit (size sufficient to fit wall anchors)
- User-provided hardware for each camera: wall anchors sufficient to mount cameras on desired surface, Phillips screws
- Hardware included: as many as 2 cameras with mounting brackets and POE splitter (see Figure 9 and Figure 10)

Figure 9 - Camera, camera base, and camera enclosure
4.4.1 **Steps for Mounting Additional Cameras**

4.4.1.1 Each Sentry-RMS will typically come with 2 pre-installed, chassis-mounted cameras. This manual will assume that the user will be installing as many as 2 additional cameras, mounted throughout the room where the Sentry-RMS is installed. These instructions will teach the user how to install 2 cameras, labeled cameras 3 and 4. This manual will also instruct the user how to remove a camera from the chassis of the Sentry-RMS (as needed), and replace the camera with a water-tight gasket.

4.4.1.2 The mounting bracket and the base of the camera are threaded into each other (see previous Figure 10). Twist them in opposite directions to unscrew the mounting bracket from the base. Take caution not to let the camera or camera enclosure fall.

4.4.1.3 Mark the location of the placement of the camera mounting-bracket holes.

4.4.1.4 Drill holes and place wall anchors as required to support the weight of the camera, base, and required Ethernet cable.

4.4.1.5 Line up the holes of the mounting bracket with the holes in the wall.

 NOTE: The camera cable must be placed under the mounting bracket prior to screwing the bracket in place. Be certain that the cord is threaded through one of the cut-away sections on the bottom of the mounting bracket to keep the
cord from being pinched (see previous Figure 10). Be certain that the grey water-tight bushing is outside of the mounting bracket.

4.4.1.6 Use Phillips screws (or other screws, as needed) to attach the mounting bracket to the flat surface.
4.4.1.7 Re-attach the base of the camera, the camera enclosure, and the camera by twisting the base back onto the mounting bracket (see Figure11).
Figure 11 - Mounting bracket, camera base, camera enclosure, and camera
4.4.1.8 Before tightening the base firmly, align the camera enclosure and camera to face the desired direction.

4.5 Camera Electrical Setup (as applicable)

- Tools needed: N/A
- User-provided hardware for each camera:
 - One Ethernet RJ-45 (10/100Base-T) cable sufficient to reach the distance from where each extra camera will be installed to the where the Sentry-RMS will be installed
 - One Ethernet coupler per camera (See Figure 12)
- Hardware included:
 - One Power of Ethernet (POE) splitter per extra camera (see Figure 13)

![Figure 12 – Ethernet coupler](image)

![Figure 13 - POE splitter (power cable and Ethernet jack)](image)
4.5.1 **Steps for the Electrical Setup of the Cameras to the Sentry-RMS (as applicable)**

4.5.1.1 First: Connect the end of the camera Ethernet jack to the user-provided Ethernet Coupler.

4.5.1.2 Second: Connect the other end of the coupler to the user-provided Ethernet cable (one sufficiently long to reach the Sentry-RMS chassis from the mounted location).

4.5.1.3 Third: Connect the other end of the user-provided Ethernet cable to the provided POE Splitter. See Figure 14.

Figure 14 - Camera connected to Ethernet cable and splitter
4.5.1.3.1 Fourth: Run the user-provided Ethernet cable down through the top of the Sentry-RMS chassis, through one of the conduit knockout holes. Connect the Ethernet-cable-end of a POE to the Sentry-RMS Ethernet jacks in the following order (see Figure 15):

4.5.1.3.2 Front, right jack for Camera #3
4.5.1.3.3 Rear, right jack for Camera #4

NOTE: The Sentry-RMS comes standard with Ethernet cables and power cords connected in Camera 1 and Camera 2 position.

NOTE: The Camera #3 jack can also be used as the local connection to a laptop for configuration. If this is the case, connect Camera #3 after configuration is complete.

Figure 15 - Ethernet camera jacks 1 – 4
4.5.1.4 Inside the Sentry-RMS chassis, immediately above the Ethernet jacks, are the power jacks (see Figure 16). For security reasons, it is important each camera use the power jack corresponding to the same number as its Ethernet port. Connect the POE power cable to the internal Sentry-RMS power jacks in the following order:

4.5.1.4.1 Second-from-the-right jack for Camera #3
4.5.1.4.2 Right jack for Camera #4

![Camera Power Jacks](image)

Figure 16 - Camera power jacks

4.5.2 **The following is the bandwidth requirements for camera image quality:**

4.5.2.1 Per Camera bandwidth:

- Quality Low = 512kbps, Medium = 1024kbps, High(default) = 2048kbps.
4.5.2.2 With 2 cameras:
Quality Low = 1024kbps, Medium = 4096kbps, High = 4096

4.6 Detaching Camera from Sentry-RMS chassis (as applicable)

- Tools needed: adjustable crescent wrench, needle-nose pliers, Allen wrench 9/64”
- Hardware provided: water-tight gasket, camera plate with four studs, four hex nuts

4.6.1 Steps for removing an Sentry-RMS chassis camera:

4.6.1.1 Look inside the Sentry-RMS chassis and find the cable coming out from the base of the camera (see Figure 17).

Figure 17 - Camera, Sentry-RMS chassis, and camera cord
4.6.1.2 Follow the cable, and carefully unplug both the Ethernet cord and the power cord from the Ethernet and power jack (see Figure 18).

Figure 18 - Camera cable, Ethernet jacks and power jacks
4.6.1.3 Unscrew base from mounting bracket by turning the mounting bracket in a counter-clockwise direction. CAUTION: The camera and enclosure may fall when the base is loose, so the user must take care to hold all of the parts carefully.

4.6.1.4 Remove the camera base, enclosure, and camera, while gently pulling the cable outside of the chassis, and set the camera, enclosure, base, and hex set screw aside to be re-installed at another location (see Figure 19).

Figure 19 - Removing camera from mounting bracket on Sentry-RMS chassis
4.6.1.5 Remove the screws, O-rings, and mounting bracket (use an Allen wrench for the screws, and a wrench for the hex nuts) and detach the bracket from the Sentry-RMS chassis. Set the mounting bracket aside with the other parts of the camera (see Figure 20).

![Figure 20 - Removing camera mounting bracket](image)

Figure 20 - Removing camera mounting bracket

4.6.1.6 Place the water-tight gasket on the camera plate, threading the studs in the plate through the holes in the gasket. Place the gasket and camera plate onto the outside of the Sentry-RMS chassis, placing the studs in the place where the camera mounting bracket screws were removed (see Figure 21).

![Figure 21](image)
4.6.1.7 On the inside of the Sentry-RMS chassis, thread one hex nut on each of the camera plate studs using an adjustable crescent wrench (see Figure 22). Tighten the nuts securely to ensure that water cannot leak into the chassis. Be sure to not overtighten the nuts.

Figure 21 - Placing water-tight gasket and camera plate on Sentry-RMS chassis

![Figure 21](image)

Figure 22 - Attaching hex nuts on to camera plate studs

If necessary, use the instructions (as described previously) for Mounting a Camera to mount the camera at another location.
4.7 Installing the Primary Backup Battery

4.7.1.1 Unwrap the primary backup battery (see Figure 23).

Figure 23 - Primary backup battery
4.7.1.2 **⚠️ DO NOT PLUG IN THE BACKUP BATTERY AT THIS POINT.** You will connect this later in the installation: see section 4.8.1.6.

4.7.1.3 Place the primary backup battery in the bottom left of the Sentry-RMS chassis, and secure it tightly with the Velcro fastener (see Figure 24 and Figure 25).

![Figure 24 - Battery in Sentry-RMS Chassis](image)

![Figure 25 - Battery strapped into Sentry-RMS chassis](image)
4.8 Wiring the User-Provided Input and Output Devices to the Sentry-RMS

- Hardware included: N/A
- Tools needed: Wire insulation strippers, wire cutters, small flat-blade or Phillips screwdriver for tightening terminal screws
- User-required hardware: Insulated wire (16 to 26 AWG), end-of-line (EOL) resistors, devices, sensors, inputs, and outputs the user desires to interface with the Sentry-RMS

4.8.1 The Sentry-RMS has terminal strips (see Figure 26) for interfacing to TIDs, external alarm sensors, and external alarm panels.

![Figure 26 - Terminal blocks J1, J2, J6, J7, J8, and J14](image)
4.8.2 **Sentry-RMS Inputs**

The Sentry-RMS supports two typical TIDs (e.g. TIDs with EOL resistor outputs), two Sentry-SEAL TIDs, one Sentry-SEAL Wireless TID Receiver, with as many as eight Sentry-SEAL Wireless TID Transmitters, and up to three additional general-use EOL resistor output sensors. (For more information on wiring, refer to terminal block connections tables below, the Sentry-SEAL manual, and the Sentry-SEAL Wireless manual). Note that Sentry-SEAL and Sentry-SEAL Wireless TIDs can operate using either Smart Interface connections or typical EOL resistor connections.

Wire all of the TIDs, including the Sentry-SEAL and Sentry-SEAL Wireless TIDs (as applicable), and general-purpose external inputs into the Sentry-RMS. Use the diagrams and tables included following pages.

CAUTION: *This process must be completed by an electrician or electrical technician or the configuration will not function correctly. All EOL resistor monitored circuits should be of the following pattern (note resistor values) as shown in the following sections.*
4.8.2.1 Sentry-SEAL

The Sentry-SEAL is a single device (see Figure 27) designed to be attached to a flat or cylindrical (minimum 12 inch radius) secured surface. The Sentry-SEAL can be mounted adjacent to the protected object, mounted inside a Sentry-RMS case, or mounted in a junction box. Mounted in this manner, if an attempt is made to remove the entire protective enclosure (containing the radioactive material or protected equipment), the Sentry-SEAL will also have to be removed from where it is mounted, and this will trigger an alarm on the alarm panel or the Sentry-RMS unit. For more information, refer to the Sentry-SEAL manual.

![Figure 27 - Sentry-SEAL external TID Device](image)

The Sentry-SEAL unit, when coupled with the Sentry-RMS, is designed to generate a notification when any of the following events takes place:

- Seal power loss or loss of connection to the fiber optic seal
- Fiber cut or disconnect
- Fiber reconnect/rearm
- Shorting of alarm trigger wires
- Cutting of alarm trigger wires
- Case tampering – removal from mounting surface or case opening
Wire the Sentry-SEAL using either the Smart Interface or EOL resistor interface as shown below.

CAUTION: Wiring both Smart Interface and EOL resistor interfaces at the same time may not allow for proper notifications. Only one interface should be wired to the Sentry-RMS.

NOTE: The diagrams do not show connecting the necessary power and ground connections. Connect 3.3V or 12V power and Ground as needed to the Sentry-RMS terminals marked as such.
Figure 28 - Example of Sentry-SEAL Configuration with Smart Interface
IMPORANT: When wiring a Seal using the EOLR interface, it must be wired to the Normally Open configuration to generate the proper alerts!

Example of Wired Configuration with Sentry Seal EOLR Interface

Figure 29 - Example of Sentry-SEAL Configuration with EOL Resistor Interface (Normally Open) – Seal must use Normally Open configuration when used in EOLR configuration
4.8.2.2 Sentry-SEAL Wireless

The Sentry-SEAL Wireless system consists of a Sentry-SEAL Wireless Receiver in wireless communication with a Sentry-SEAL Wireless Transmitter (see Figure 30). This wireless Receiver and Transmitter is designed to accomplish the same purpose as the Sentry-SEAL, with the difference being that the Transmitter(s) can be in one location, and the Receiver can be in another. For more information, refer to the Sentry-SEAL Wireless manual.

Figure 30 - Sentry-SEAL Wireless Receiver and Sentry-SEAL Wireless Transmitter

Wire the Sentry-SEAL Wireless using either the Smart Interface or EOL resistor interface as shown below.

CAUTION: Wiring both Smart Interface and EOL resistor interfaces at the same time may not allow for proper notifications. Only one interface should be wired to the Sentry-RMS.
Figure 31 - Example of Wireless Sentry-SEAL Receiver with Smart Interface
IMPORANT: When wiring a Seal using the EOLR interface, it must be wired to the Normally Open configuration to generate the proper alerts!

Example of Wireless Sentry Seal Receiver EOLR Interface

Figure 32 - Example of Wireless Sentry Seal Receiver with EOL Resistor Interface (Normally Open) – Seal must use Normally Open configuration when used in EOLR configuration
4.8.2.3 General-purpose External Inputs

Wire as needed the additional general-purpose external inputs per Figure 33 below.

Example of Wiring

External Input Alarms

![Diagram of External Input Alarms](image)

Figure 33 - Example of Wiring External Input Alarms (Normally Open)
Table 1- Terminal Block J7 (Pins 1-12)

<table>
<thead>
<tr>
<th>Hardwired TIDs (Quantity 2)</th>
<th>Description</th>
<th>Terminal Block # & Pin #</th>
</tr>
</thead>
<tbody>
<tr>
<td>TID 1 Power</td>
<td>This provides 12V Power (at up to 500mA) to TID 1.</td>
<td>J7 Pin 1</td>
</tr>
<tr>
<td>TID 1 Ground</td>
<td>This provides a Ground connection to TID 1.</td>
<td>J7 Pin 2</td>
</tr>
<tr>
<td>TID 1 Relay1 Contact 1</td>
<td>This line is connected to 3.3V on the Interface Board and is used to energized the TID end-of-line resistor.</td>
<td>J7 Pin 3</td>
</tr>
<tr>
<td>TID 1 Relay1 Contact 2</td>
<td>This line is pulled down on the Interface Board through a 4.7K resistor. The voltage on this line is measured by an Interface Board microcontroller ADC input.</td>
<td>J7 Pin 5</td>
</tr>
<tr>
<td>TID 1 Relay2 Contact 1</td>
<td>This line is connected to 3.3V on the Interface Board and is used to energized the TID end-of-line resistor.</td>
<td>J7 Pin 4</td>
</tr>
<tr>
<td>TID 1 Relay2 Contact 2</td>
<td>This line is pulled down on the Interface Board through a 4.7K resistor. The voltage on this line is measured by an Interface Board microcontroller ADC input.</td>
<td>J7 Pin 6</td>
</tr>
<tr>
<td>TID 2 Power</td>
<td>This provides 12V Power (at up to 500mA) to TID 2.</td>
<td>J7 Pin 7</td>
</tr>
<tr>
<td>TID 2 Ground</td>
<td>This provides a Ground connection to TID 2.</td>
<td>J7 Pin 8</td>
</tr>
<tr>
<td>TID 2 Relay1 Contact 1</td>
<td>This line is connected to 3.3V on the Interface Board and is used to energized the TID end-of-line resistor.</td>
<td>J7 Pin 9</td>
</tr>
<tr>
<td>TID 2 Relay1 Contact 2</td>
<td>This line is pulled down on the Interface Board through a 4.7K resistor. The voltage on this line is measured by an Interface Board microcontroller ADC input.</td>
<td>J7 Pin 11</td>
</tr>
<tr>
<td>TID 2 Relay2 Contact 1</td>
<td>This line is connected to 3.3V on the Interface Board and is used to energized the TID end-of-line resistor.</td>
<td>J7 Pin 10</td>
</tr>
<tr>
<td>TID 2 Relay2 Contact 2</td>
<td>This line is pulled down on the Interface Board through a 4.7K resistor. The voltage on this line is measured by an Interface Board microcontroller ADC input.</td>
<td>J7 Pin 12</td>
</tr>
<tr>
<td>Description</td>
<td>Connection</td>
<td>Pin</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>External Input Alarm 1 Power</td>
<td>This provides 12V Power to External Input 1</td>
<td>J7 Pin 13</td>
</tr>
<tr>
<td>External Input Alarm 1 Ground</td>
<td>This provides a Ground connection to External Input 1</td>
<td>J7 Pin 14</td>
</tr>
<tr>
<td>External Input Alarm 1 Relay Contact 1</td>
<td>This line is connected to 3.3V on the Interface Board and is used to energize the alarming device end-of-line resistor.</td>
<td>J7 Pin 15</td>
</tr>
<tr>
<td>External Input Alarm 1 Relay Contact 2</td>
<td>This line is pulled down on the Interface Board through a 4.7K resistor. The voltage on this line is measured by an Interface Board microcontroller ADC input.</td>
<td>J6 Pin 1</td>
</tr>
<tr>
<td>External Input Alarm 2 Power</td>
<td>This provides 12V Power to External Input 2</td>
<td>J6 Pin 2</td>
</tr>
<tr>
<td>External Input Alarm 2 Ground</td>
<td>This provides a Ground connection to External Input 2</td>
<td>J6 Pin 3</td>
</tr>
<tr>
<td>External Input Alarm 2 Relay Contact 1</td>
<td>This line is connected to 3.3V on the Interface Board and is used to energize the alarming device end-of-line resistor.</td>
<td>J6 Pin 4</td>
</tr>
<tr>
<td>External Input Alarm 2 Relay Contact 2</td>
<td>This line is pulled down on the Interface Board through a 4.7K resistor. The voltage on this line is measured by an Interface Board microcontroller ADC input.</td>
<td>J6 Pin 5</td>
</tr>
<tr>
<td>External Input Alarm 3 Power</td>
<td>This provides 12V Power to External Input 3</td>
<td>J6 Pin 6</td>
</tr>
<tr>
<td>External Input Alarm 3 Ground</td>
<td>This provides a Ground connection to External Input 3</td>
<td>J6 Pin 7</td>
</tr>
<tr>
<td>External Input Alarm 3 Relay Contact 1</td>
<td>This line is connected to 3.3V on the Interface Board and is used to energize the alarming device end-of-line resistor.</td>
<td>J6 Pin 8</td>
</tr>
<tr>
<td>External Input Alarm 3 Relay Contact 2</td>
<td>This line is pulled down on the Interface Board through a 4.7K resistor. The voltage on this line is measured by an Interface Board microcontroller ADC input.</td>
<td>J6 Pin 9</td>
</tr>
</tbody>
</table>
Table 3 - Sentry-SEAL Smart Analog Interface Terminal Block Connections

<table>
<thead>
<tr>
<th>Sentry-SEAL Smart Analog Interface TI(s) (Quantity 2)</th>
<th>Description</th>
<th>Terminal Block # & Pin #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any available of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Pin 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Pin 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Pin 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Pin 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Pin 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Pin 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This provides 12V Power (at up to 500 mA) to Sentry-SEAL TID 1</td>
<td>Any available of:</td>
<td></td>
</tr>
<tr>
<td>17 Pin 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Pin 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Pin 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Pin 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Pin 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Pin 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Pin 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Pin 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Pin 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Pin 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Pin 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This provides a Ground connection to Sentry-SEAL TID 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This line provides Sentry-SEAL TID 1 signaling to the Sentry-RMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Pin 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Pin 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Pin 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Pin 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Pin 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Pin 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This provides 12V Power (at up to 500 mA) to Sentry-SEAL TID 2</td>
<td>Any available of:</td>
<td></td>
</tr>
<tr>
<td>17 Pin 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Pin 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Pin 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Pin 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Pin 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Pin 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Pin 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Pin 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Pin 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Pin 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Pin 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This provides a Ground connection to Sentry-SEAL TID 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This line provides Sentry-SEAL TID 2 signaling to the Sentry-RMS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4 - Sentry-SEAL Wireless Smart Data Interface Terminal Block Connections

<table>
<thead>
<tr>
<th>Sentry-SEAL Wireless Smart Analog Interface TIDs</th>
<th>Description</th>
<th>Terminal Block # & Pin #</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Quantity 1 Receiver with up to 8 Transmitters)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentry-SEAL Wireless TID Receiver Power</td>
<td>This provides 12V power (at up to 500mA) to Sentry-SEAL Wireless Receiver</td>
<td>Any available of:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J7 Pin 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J7 Pin 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J7 Pin 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J6 Pin 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J6 Pin 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J8 Pin 6</td>
</tr>
<tr>
<td>Sentry-SEAL Wireless TID Receiver Ground</td>
<td>This provides a Ground connection to Sentry-SEAL Wireless Receiver</td>
<td>Any available of:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J7 Pin 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J7 Pin 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J7 Pin 14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J6 Pin 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J6 Pin 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J6 Pin 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J8 Pin 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J8 Pin 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J8 Pin 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J8 Pin 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J8 Pin 15</td>
</tr>
<tr>
<td>Sentry-SEAL Wireless TID Receiver Tx</td>
<td>This provides information from Sentry-SEAL Wireless TID Receiver to the Sentry-RMS</td>
<td>J8 Pin 12</td>
</tr>
<tr>
<td>Sentry-SEAL Wireless TID Receiver Rx</td>
<td>This allows for the Sentry-RMS to send information back to the Sentry-SEAL Wireless TID Receiver</td>
<td>J8 Pin 13</td>
</tr>
</tbody>
</table>
4.8.3 Sentry-RMS Outputs to Alarm Panel

4.8.3.1 Wire all alarm panel outputs from the Sentry-RMS. Use the diagrams and tables included in the following pages.

CAUTION: *This process must be completed by an electrician or electrical technician or the configuration will not function correctly.*

External relay outputs will be triggered by alarms per the following:

<table>
<thead>
<tr>
<th>High Radiation relay</th>
<th>Enclosure Tamper relay</th>
<th>TID1 relay</th>
<th>TID2 relay</th>
<th>External Output relay</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Radiation Alarm</td>
<td>Lid Open Alarm</td>
<td>TID 1 Alarms</td>
<td>TID 2 Alarms</td>
<td>[User configurable for any alarm or alert]</td>
</tr>
<tr>
<td>Case Penetrated Alarm</td>
<td>Sentry-Seal 1 Alarms</td>
<td>Sentry-Seal 2 Alarms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentry-RMS Moved Alarm</td>
<td>Sentry-Seal Wireless 1 Alarms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentry-Seal Wireless 2 Alarms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentry-Seal Wireless 3 Alarms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentry-Seal Wireless 4 Alarms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentry-Seal Wireless 5 Alarms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentry-Seal Wireless 6 Alarms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentry-Seal Wireless 7 Alarms</td>
<td>Sentry-Seal Wireless 8 Alarms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 34 – Wiring of Alarm Outputs
Figure 35 – Example of Wiring Alarm Outputs
Table 5- Terminal Block J1

<table>
<thead>
<tr>
<th>Supervised Alarm Panel Outputs</th>
<th>Description</th>
<th>Terminal Block# & Pin#</th>
</tr>
</thead>
<tbody>
<tr>
<td>External TID_1 Alarm Panel Output Relay Contact 1</td>
<td>This is a normally-open relay output controlled by the Interface Board microcontroller. An end-of-line resistor is placed across the relay output. This end-of-line resistor is inserted into a terminal block on the Interface Board to allow selection of appropriate resistor values for an alarm panel.</td>
<td>J1 Pin 1</td>
</tr>
<tr>
<td>External TID_1 Alarm Panel Output Relay Contact 2</td>
<td>This is a normally-open relay output controlled by the Interface Board microcontroller. An end-of-line resistor is placed across the relay output. This end-of-line resistor is inserted into a terminal block on the Interface Board to allow selection of appropriate resistor values for an alarm panel.</td>
<td>J1 Pin 2</td>
</tr>
<tr>
<td>External TID_1 Alarm Panel Output Relay Contact 1 - EOL Resistor Connection</td>
<td>This is the first terminal block connection for the EOL resistor for the External TID_1 Alarm Panel Output Relay.</td>
<td>J1 Pin 3</td>
</tr>
<tr>
<td>External TID_1 Alarm Panel Output Relay Contact 2 - EOL Resistor Connection</td>
<td>This is the second terminal block connection for the EOL resistor for the External TID_1 Alarm Panel Output Relay.</td>
<td>J1 Pin 4</td>
</tr>
<tr>
<td>External TID_2 Alarm Panel Output Relay Contact 1</td>
<td>This is a normally-open relay output controlled by the Interface Board microcontroller. An end-of-line resistor is placed across the relay output. This end-of-line resistor is inserted into a terminal block on the Interface Board to allow selection of appropriate resistor values for an alarm panel.</td>
<td>J1 Pin 5</td>
</tr>
<tr>
<td>External TID_2 Alarm Panel Output Relay Contact 12</td>
<td>This is a normally-open relay output controlled by the Interface Board microcontroller. An end-of-line resistor is placed across the relay output. This end-of-line resistor is inserted into a terminal block on the Interface Board to allow selection of appropriate resistor values for an alarm panel.</td>
<td>J1 Pin 6</td>
</tr>
<tr>
<td>External TID_2 Alarm Panel Output Relay Contact 1 - EOL Resistor Connection</td>
<td>This is the first terminal block connection for the EOL resistor for the External TID_2 Alarm Panel Output Relay.</td>
<td>J1 Pin 7</td>
</tr>
<tr>
<td>External TID_2 Alarm Panel Output Relay Contact 2 - EOL Resistor Connection</td>
<td>This is the second terminal block connection for the EOL resistor for the External TID_2 Alarm Panel Output Relay.</td>
<td>J1 Pin 8</td>
</tr>
<tr>
<td>External Alarm Panel Output Relay Contact 1</td>
<td>This is a normally-open relay output controlled by the Interface Board microcontroller. An end-of-line resistor is placed across the relay output. This end-of-line resistor is inserted into a terminal block on the Interface Board to allow selection of appropriate resistor values for an alarm panel.</td>
<td>J1 Pin 9</td>
</tr>
<tr>
<td>External Alarm Panel Output Relay Contact 2</td>
<td>This is a normally-open relay output controlled by the Interface Board microcontroller. An end-of-line resistor is placed across the relay output. This end-of-line resistor is inserted into a terminal block on the Interface Board to allow selection of appropriate resistor values for an alarm panel.</td>
<td>J1 Pin 10</td>
</tr>
</tbody>
</table>
Table 6- Terminal Block J2

<table>
<thead>
<tr>
<th>Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Alarm Panel Output Relay Contact 1 - EOL Resistor Connection</td>
<td>This is the first terminal block connection for the EOL resistor for the External Input Alarm Panel Output Relay</td>
</tr>
<tr>
<td>Externar Alarm Panel Output Relay Contact 2 - EOL Resistor Connection</td>
<td>This is the second terminal block connection for the EOL resistor for the External Input Alarm Panel Output Relay</td>
</tr>
<tr>
<td>High Radiation Alarm Output Relay Contact 1</td>
<td>This is a normally-open relay output controlled by the Interface Board microcontroller. An end-of-line resistor is placed across the relay output. This end-of-line resistor is inserted into a terminal block on the Interface Board to allow selection of appropriate resistor values for an alarm panel.</td>
</tr>
<tr>
<td>High Radiation Alarm Output Relay Contact 2</td>
<td>This is a normally-open relay output controlled by the Interface Board microcontroller. An end-of-line resistor is placed across the relay output. This end-of-line resistor is inserted into a terminal block on the Interface Board to allow selection of appropriate resistor values for an alarm panel.</td>
</tr>
<tr>
<td>High Radiation Alarm Output Relay Contact 1 - EOL Resistor Connection</td>
<td>This is the first terminal block connection for the EOL resistor for the High Radiation Alarm Panel Output Relay</td>
</tr>
<tr>
<td>High Radiation Alarm Output Relay Contact 2 - EOL Resistor Connection</td>
<td>This is the second terminal block connection for the EOL resistor for the High Radiation Alarm Panel Output Relay</td>
</tr>
<tr>
<td>Enclosure Tamper Alarm Output Relay Contact 1</td>
<td>This is a normally-open relay output controlled by the Interface Board microcontroller. An end-of-line resistor is placed across the relay output. This end-of-line resistor is inserted into a terminal block on the Interface Board to allow selection of appropriate resistor values for an alarm panel.</td>
</tr>
<tr>
<td>Enclosure Tamper Alarm Output Relay Contact 2</td>
<td>This is a normally-open relay output controlled by the Interface Board microcontroller. An end-of-line resistor is placed across the relay output. This end-of-line resistor is inserted into a terminal block on the Interface Board to allow selection of appropriate resistor values for an alarm panel.</td>
</tr>
<tr>
<td>Enclosure Tamper Alarm Output Relay Contact 1 - EOL Resistor Connection</td>
<td>This is the first terminal block connection for the EOL resistor for the Enclosure Tamper Alarm Panel Output Relay</td>
</tr>
<tr>
<td>Enclosure Tamper Alarm Output Relay Contact 2 - EOL Resistor Connection</td>
<td>This is the second terminal block connection for the EOL resistor for the Enclosure Tamper Alarm Panel Output Relay</td>
</tr>
</tbody>
</table>
4.8.4 Plug in the primary backup cable into middle power jack, found at the bottom of the green, printed circuit board (see Figure 36).

Figure 36 - Backup battery power jack in the middle

4.8.5 Apply AC power to the Sentry-RMS.
4.9 Tamper Sensors

4.9.1 Light Sensors

4.9.1.1 The Sentry-RMS unit is equipped with multiple tamper sensors. Light sensors are located in multiple places within the interior of the unit. If outside ambient light is detected within the unit (such as opening the front panel or drilling the outside box), the unit will alarm. NOTE: Make precautions to not allow ambient light through the top conduits.

4.9.2 Back Plate Pressure Button

4.9.2.1 A back-plate pressure button is located at the back of the Sentry-RMS unit. After installation of the unit, if the unit is removed from the wall, the unit will alarm. NOTE: Be sure to use the correct screws as specified in 4.1 or the tamper button will not function correctly.

Figure 37 - Back Plate Pressure Button
5 Preparation for Software Setup of the Sentry-RMS Configuration Tool (SCT)

5.1 Option 1 - Connecting to the site via network

5.1.1.1 After the completion of mounting the Sentry-RMS and providing it with power, there are two methods to connect to the SCT, as described in the following sections: Using Sentry-RMS Primary Ethernet port and a site’s DHCP Server.

5.1.1.2 The site’s DHCP server needs to be configured to assign a known IP address to the Sentry-RMS’s MAC address. (The Primary MAC address is the first address found on a sticker inside the enclosure near the top). Record this IP Address for use in Section 6.

5.1.1.3 The site’s Ethernet cable needs to be plugged into the Sentry-RMS Primary Ethernet port – the left rear Ethernet port (see Figure 38).

5.1.1.4 Repeat this process for a Secondary Ethernet site, as appropriate. (The Secondary MAC address is the second address on the same sticker). Record this IP Address for use in Section 6. Note that the Secondary IP address must be on a different subnet.

5.1.1.5 Open a web browser and enter the fixed IP address in the URL address bar of the web browser.
5.2 Using the Maintenance Port (Also Known as Camera Jack #3)

5.2.1.1 If using the Maintenance Port for configuration, connect a laptop to Camera Jack #3 using a standard Ethernet cable (not the splitter).

Open a web browser and enter IP address 192.168.233.1 in the URL address bar of the web browser.
6 Sentry-RMS Configuration Tool – Login, Description and Usage

6.1 Login to SCT and Event Viewer

To begin the setup of the software of the SCT, open an Internet browser on the computer, and type in the IP address recorded in Section 5.

- When SCT is launched, click on Sentry-RMS Configuration Tool (see Figure 39). *NOTE: Information about the Event Viewer will be shown later in this manual.*

![Figure 39 - SCT opening screen](image)

- The user will be asked to provide the system username credentials. On this screen, the user can also choose the preferred language. Enter the Sentry-RMS Username as “rmsuser” and Password as “userStart9” (excluding the “” quotation marks), and click Login (there will be a prompt to change the password later in the SCT setup). See Figure 40.

![Figure 40 – System username credentials window](image)
• After providing the system user login, the user will then be prompted for the system administrator credentials. Enter the system administrator Username as “root” and Password as “rootStart9” (excluding the ”” quotation marks). Click Login (there will be a prompt to change the password later in the SCT setup). See Figure 41.

![System administrator credentials screen](image)

Figure 41 – System administrator credentials screen

• If using windows domain authentication, the user may be prompted to upload a domain public certificate. After selecting the certificate, select “Upload” and the certificate prompt should disappear. See Figure 41.2.

![LDAP certificate prompt](image)

Figure 42 - LDAP certificate prompt
6.2 SCT Description and Usage

The first window of the SCT will open to the Configuration Tool Settings tab. During this initial setup, all other tabs will be greyed out. A Configuration Wizard will walk the user through the setup process by allowing the user to complete one tab, and then to click the “Next” button at the bottom of the page. The following is a list of the tabs, and a brief description of the purpose of each tab (see Figure 43).

- **Configuration tool settings**: This tab allows the user to update firmware, import a configuration file, export a configuration file, and change the preferred language.

- **Alarm/alert settings**: This tab allows the user to input customized input and output sensors, set levels for radiation, and view battery and disk thresholds.

- **Monitoring stations**: This tab allows the user to associate the Sentry-RMS with monitoring stations (input the Display Names of monitoring stations, set the station type, and copy corresponding Security Tokens).

- **Networking**: This tab allows the user to insert the Primary and Secondary Ethernet port configurations, set the name of the Sentry-RMS, set State of Health periods, upload SSL certificates, set mail server information (for email and text notifications), set system passwords, and configure the web authentication method.

- **Cameras**: This tab allows the user to insert the names given to the cameras for a particular Sentry-RMS device. This tab is also used to control which camera saves video clips for specific alarms.

- **Text/email notifications**: This tab shows the events that can be sent via email or text, and allows the user to add people to be notified when specific events are generated by the Sentry-RMS.

- **Data storage**: This tab allows the user to determine how long video data will be stored and configure a backup server.

- **Configuration history**: This tab allows the user to see what configuration changes have been made to the Sentry-RMS and who made the changes.

- **Event viewer**: This tab launches the Event Viewer, which shows the user the Sentry-RMS State of Health (SoH), details of past Alarms and Alerts, and Logs of all events.
Figure 43 - SCT initial setup screen
7 Instructions on Setting Up the SCT

7.1 Configuration Tool Settings

The first tab allows the user to update firmware, import a configuration file, export a configuration file, and change the preferred language.

IMPORTANT: It is important that you update the Sentry-RMS to the latest firmware when configuring the hardware. See details in the next section.
7.1.1 Update Firmware

7.1.1.1 To get the most recent firmware update, contact the authorized third-party installers of the firmware manufacturer. After the user has a copy of the newest firmware saved on the computer (or other storage device), the user will click on the “Update Firmware” button.

7.1.1.2 A window will open allowing the user to browse for the firmware update by choosing a file, and browsing through the user’s computer (or other storage device) for the saved file (see Figure 44). After choosing the update, click the Update button. This process will take a few minutes. After the update is complete, the user will see a message indicating whether the update was successful.

7.1.1.3 If not, run the update process again.

IMPORTANT: You cannot update firmware if the Sentry-RMS is running on battery. Ensure that you have A/C power before performing an update.

![Figure 44 - Firmware update screen](image-url)
7.1.2 Export Configurations
(Skip this section when configuring the first unit)

7.1.2.1 Exporting is useful when the user needs to configure another Sentry-RMS.

7.1.2.2 After the first Sentry-RMS has been configured, the user has the ability to save the configuration by using the Export function. Before the Export can be completed, the user has to choose a password and type the password in two Password boxes (see Figure 45). This exported file and associated password must be available later to any user needing to use the Import function later.

![Image of Sentry-RMS configuration interface]

Figure 45 - Exporting a configuration

7.1.2.3 After typing in the passwords, click Export. A file labeled config.enc will be downloaded onto the computer. Save the Exported file to a known location on the computer or another storage device.
7.1.3 **Import Configurations**
(Skip this section when configuring the first unit)

7.1.3.1 Importing the configuration file will allow the SCT site to be populated with previously-defined configurations without having to repeat the entire process completed in a previous SCT setup.

7.1.3.2 Click on the Import Config button, enter the Configuration Password used when the export was saved. Navigate to the saved SCT configuration saved on the computer or other storage device (see Figure 46). Choose the configuration file, then click “Import.”

7.1.3.3 After Importing for a second Sentry-RMS, the user can change items such as the IP Addresses, Monitor Names, and other items to modify the Sentry-RMS configuration to correlate with the second Sentry-RMS. Security Tokens are not exported and are unique for each Sentry-RMS.

![Figure 46 - Importing a configuration](image-url)
7.1.3.4 After the successful Import, click the “Next” button on the lower right corner of the screen when all applicable steps have been taken on this tab.

Note that even when you import from an existing configuration, some parameters will still need to be uniquely modified (Sentry-RMS Name, IP Addresses, etc).
7.1.4 Alarm/Alert Settings tab

7.1.4.1 This tab allows the user to input customized input and output sensors, and set levels for radiation alerts (see Figure 47).

7.1.4.2 In the leftmost box, the user can set up the names of user-customizable sensors that have been designed to work with the Sentry-RMS system. These sensors can be wired to a terminal strip block inside the Sentry-RMS. This should have been done by the team assigned to install the hardware for the Sentry-RMS system (see the Hardware Installation section in this manual for more details).
7.1.4.3 For every custom Input device that the user wants to interface with the Sentry-RMS system, the user must first click the Enable box. This will allow the user to type a name for the device (see Figure 48).

![Figure 48 - Naming custom inputs](image)

7.1.4.4 To configure the custom, external output interface with the Sentry-RMS system, the user must first click in the External Output 1 Enable box. This will allow the user to type a name for the custom device (see Figure 49). External Output 1 can be triggered from Sentry-RMS alarms on an existing site alarm panel. In addition, the default state of the relays for the alarm outputs can be set to open or closed.
External relay outputs will be triggered by alarms per the following:

<table>
<thead>
<tr>
<th>High Radiation relay</th>
<th>Enclosure Tamper relay</th>
<th>TID1 relay</th>
<th>TID2 relay</th>
<th>External Output relay</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Radiation Alarm</td>
<td>Lid Open Alarm</td>
<td>TID 1 Alarms</td>
<td>TID 2 Alarms</td>
<td>[User configurable for any alarm or alert]</td>
</tr>
<tr>
<td>Case Penetrated Alarm</td>
<td>Sentry-Seal 1 Alarms</td>
<td>Sentry-Seal 2 Alarms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentry-RMS Moved Alarm</td>
<td>Sentry-Seal Wireless 1 Alarms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentry-Seal Wireless 2 Alarms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentry-Seal Wireless 3 Alarms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentry-Seal Wireless 4 Alarms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentry-Seal Wireless 5 Alarms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentry-Seal Wireless 6 Alarms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentry-Seal Wireless 7 Alarms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentry-Seal Wireless 8 Alarms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.1.4.5 The alarm output relays can be set up to be normally closed or normally open. Select the radio button for the desired setting.

7.1.4.6 If the user chooses to set up an External Output, the user should enable the External Output, name it, and then click the “External Output 1 alarm/alert mappings” button (see Figure 49).
7.1.4.7 Select what type of alarms/alerts will trigger the external signal to an external alarm panel. Click the boxes that correspond to the desired alarms/alerts, and click OK (see Figure 50).

![Mapping of alarms/alerts to external output 1](image)

Figure 50 - Mapping Alarm to outputs
7.1.4.8 At the bottom of the Alarm Inputs/Outputs box is a place to name Tamper Indicator Devices (TIDs). Place a check in the Enable box, and name the TIDs as shown in Figure 51.

![Tamper Indicator Devices](image)

Figure 51 - Naming TID, Sentry-SEAL, and Sentry-SEALWireless devices

7.1.4.9 On this same tab (the Alarm/Alert Settings tab), on the top right, the Radiation Detector is set up. Radiation threshold is also set on this tab. To test the radiation detector, click the “Test Now” (see Figure 52). This test can take up to five minutes to complete.

7.1.4.10 If the Communication Loss message appears, verify the connection to the radiation device, and test the detector again. If there is still an issue, contact the hardware installer for help in troubleshooting the problem.
7.1.4.11 The User will be required to enter the Detector Name before proceeding to the next tab.

![Image of radiation detector with naming and calibration options]

Figure 52 - Naming radiation detector

7.1.4.12 The user can also calibrate the radiation detector test. This has typically already been done at the factory. The test can take up to 10 minutes and will respond with whether or not it was successful.

7.1.4.13 The box on the bottom right of the Alarm/Alerts Settings tab is created to view the thresholds for Low Battery, Very Low Battery, Low Disk Space, and No Disk Space warnings. Threshold levels will be pre-configured (see Figure 53).

![Image showing battery level alarm/alert thresholds]

Figure 53 - Battery level alarm/alert thresholds

7.1.4.14 Click the “Next” button on the lower right corner of the screen when all applicable steps have been taken on this tab.
7.1.5 **Monitoring Stations tab**

7.1.5.1 This tab allows the user to associate the Sentry-RMS with monitoring stations (input the Display Names of monitoring stations, set the station type, and generate Security Tokens).

7.1.5.2 Each Sentry-RMS device supports up to six monitoring stations. The Monitoring Stations are enabled in the SCT by checking the Enable box for each applicable location. The Station type (Security or Observation) should be selected from the radio buttons (see Figure 54). NOTE: The names of the monitoring stations must be **identical** in the OICT and the Sentry-RMS to establish secure communications.

7.1.5.3 Security Roles allow specific personnel (Security Monitors) to acknowledge alarms and alerts.

7.1.5.4 Observation Roles will prohibit specific personnel (Observation Monitors) from acknowledging alarms or alerts. They will only be able to view events, video, and reports.
7.1.5.5 During every OIS Configuration that is set up during the OICT setup process, the user will set up a Display Name, and a Security Token can be generated. In order to choose a Display Name, on the Monitor Stations tab, the user types a name into one of the Monitoring Station boxes, in the “Display Name” box.

7.1.5.6 To generate a Security Token, click the Generate button and the text field will populate with a new token. In order to remove the token and prevent it from being used anymore, click the Delete button. After the token is deleted, the user will need to generate a new token for the monitoring station to connect once again.

Figure 54 - Naming monitoring stations and generating Security Tokens
NOTE: To simplify configuration, the PKCS12 file uses a shared password kept in the OICT code. This should be fine as long as the administrator transfers this file securely (copy and paste via clipboard or encrypted in an email, not pasted to a text file or distributed through email without taking additional steps to protect them). When pasting using the clipboard, the OICT will clear the clipboard automatically after the paste. This is the only time the Tokens have this vulnerability because once they are consumed by the OICT and distributed in OIS configuration files, they are protected by the OIS configuration file encryption.

7.1.5.7 This step of setting up the Monitoring Stations should be completed for every Monitoring Station configuration applicable to the Sentry-RMS (see Figure 55).

![Monitoring Station Setup](image)

Figure 55 - Monitoring Station Setup
7.1.5.8 The bottom left box on this tab is labeled General Monitoring Station Parameters. In this box, the user can decide how many monitoring station responses are required to “close” an alarm or an alert (see Figure 56).

7.1.5.9 **NOTE:** When an alarm or an alert is triggered, all configured and associated Monitoring Stations will get a notification. However, during the configuration of the SCT, the user can decide how many people must respond to the event. At SCT setup, the user must require at least one Security Monitoring Station to close an alarm or alert. In the bottom left box, there is also a place to decide the maximum number of minutes that will be allowed to pass before the correct number of monitoring stations acknowledge an event. By setting this parameter, if the event is not acknowledged correctly, the alarm/alert will be sent again to all monitoring stations (see also Figure 56).

![General monitoring station parameters](image)

Figure 56 - Setting the number of stations required to acknowledge alarms

7.1.5.10 Click the “Next” button on the lower right corner of the screen when all applicable steps have been taken on this tab.
7.1.6 Networking Tab - Ethernet, Set Passwords, State of Health, SMTP, SSL, Authentication Method

The Networking Tab allows the user to insert the Primary and Secondary Ethernet port configurations; set the name of the Sentry-RMS; set State of Health periods; set mail server information (for email and text notifications); configure the system passwords and set up the SCT authentication method in the future.

7.1.6.1 The Primary and Secondary Ethernet Port information will be entered here. This information must match the information that is used in the OICT configuration for this Sentry-RMS. Each Sentry-RMS is designed to support two parallel, simultaneously-active interfaces to support a primary and backup communication network between the Sentry-RMS and the monitoring stations.

7.1.6.2 The Primary and Secondary IP addresses must be either static or fixed and given by a DHCP server based on MAC address. The MAC addresses for these ports are listed on the sticker on the box. Communication between the Sentry-RMS and the operator monitoring software will not function properly with a changing dynamic IP address from a DHCP server.

7.1.6.3 The Primary and Secondary IP addresses must be on separate subnets (see Figure 57).

![Figure 57 - Entering primary and secondary Ethernet port information](image)

Figure 57 - Entering primary and secondary Ethernet port information
7.1.6.4 To use the DHCP assigned fixed IP address, keep the Dynamic Host Configuration Protocol (DHCP) box selected (see Figure 58). The Dynamic Host Configuration Protocol (DHCP) enables a server to automatically assign the IP address.

![DHCP setup](image)

Figure 58 - DHCP setup

7.1.6.5 In the left, middle box labeled Sentry-RMS Settings, the user should type the name given to that Sentry-RMS. At this time, the user can also define how often the State of Health (SoH) is sent to the monitoring stations, and how long a Security Monitor has to acknowledge a SoH alert (see Figure 59).

![Sentry-RMS settings](image)

Figure 59 - State of Health settings and Sentry-RMS name
7.1.6.6 Also in the Sentry-RMS Settings box are places for the user to set up (or change) the system user password, and the system administrator password. Both passwords must be changed during the initial setup. Click on the password button, and type in the new password in both upper and lower boxes (see Figure 60). NOTE: Passwords must be at least 10 characters, have 1 uppercase letter, 1 lowercase letter, and 1 number.

Figure 60 - Setting passwords
7.1.6.7 To use a local authentication, select the Local authentication radio dial. When this method is chosen, the authentication information will automatically come from the Sentry-RMS Settings (the system user password and system administrator password).

7.1.6.8 To use Windows Active Directory, select the Windows domain radio button, and enter the Server information and the Domain information, and Port provided by the network administrator. Click “Test Windows Authentication” to verify that the information has been entered correctly.

7.1.6.9 The network administrator will need to create a user group and an administrator group and add the appropriate users to those accounts. Those group names then need to be added to the “User group” and “Administrator group” boxes as can be seen in Figure 61. Once this has been setup, these web pages can be used by dual authentication by users from one of each of these groups. Enter the information in Figure 61 if you are using windows domain authentication.

7.1.6.10 A domain public certificate will also need to be uploaded. The network administrator should be able to provide an LDAP public certificate that can be uploaded here.
Figure 61 - Windows domain authentication for Sentry-RMS
7.1.6.11 The SMTP (Simple Mail Transfer Protocol) mail server box will allow the user to enter the Server information for sending emails and text messages to users when pre-defined events take place. Complete the Server box by entering the information provided by the network administrator and enter the correct Port information (see Figure 62).

![SMTP mail server](image)

Figure 62 - SMTP setup

7.1.6.12 If the “Login Required” box is checked, enter the Username and Password for the mail server that will be used to send notifications.

7.1.6.13 The SSL High Assurance Certificates box will allow the user to upload the Certificate file and the Key file from the user’s computer. These certificates are used to provide authenticity on behalf of the Sentry-RMS web server running SCT and EventView web interfaces.
7.1.6.14 Click on the Certificate File “Choose File” button. A window will open to allow the user to find the certificate file on their computer or storage device. Double-click on the certificate file, and the file will be loaded into the Certificate File Box. Repeat for uploading the Key file (see Figure 63).

Figure 63 - SSL setup

7.1.6.15 Click the “Next” button on the lower right corner of the screen when all applicable steps have been taken on this tab.
7.1.7 **Cameras tab**

7.1.7.1 This tab allows the user to type in the names given to the cameras for a particular Sentry-RMS device. It also allows configuration of the cameras (see Figure 64). The user must click “Enable” to enter information on a camera. This tab is also used to control which camera saves video clips for specific alarms.

![Figure 64 - Naming and configuring cameras](image-url)
7.1.7.2 The box on the upper right allows the user to configure cameras and alarms by putting checkmarks indicating what camera will record the different events of the Sentry-RMS system.

7.1.7.3 Click the “Next” button on the lower right corner of the screen when all applicable steps have been taken on this tab.

7.1.8 **Email/Text Notifications Tab**

7.1.8.1 This tab shows the types of alerts that can be sent via email or text, and allows the user to add people to be notified when specific alerts are generated by the Sentry-RMS (see Figure 65).

![Image of configuration tool settings with options including Text/email notifications]

Figure 65 - Adding a user to receive test or email notifications
To set up a new user, click on the “Add User Notification” button. Enter the information about the person that should receive an email or text message when an event happens. Click Create (see Figure 66).

![Add user notification form](image)

Figure 66 - Text Message Address
7.1.8.3 The user can now decide which events will be sent, by selecting the correct boxes (see Figure 67).

Figure 67 - Configuring user notifications

- User's information
- Check these boxes if you want ALL Alarms and/or Alerts sent to the user.
- Check specific boxes to customize which information is sent to the user.
7.1.8.4 Click “Next” in the lower right corner.

7.1.9 Data Storage tab

7.1.9.1 This tab allows the user to set up a backup server and determine how long video data will be stored. The user will choose how long data is retained by filling out the boxes in the upper left box labeled Data Retention Parameters.

7.1.9.2 The right box is for setting up a backup server for storing video and log data from the Sentry-RMS (see Figure 68). The backup server must support SCP file transfers. The user must click “Enable” to complete these fields.

7.1.9.3 The “View public key” will show an SSH Security Token that must be copied into the “authorized_keys” file on the storage server.

![Data retention parameters](Figure 68 - Data retention setup)

7.1.9.4 To test the connection to the server, click the “Test Connection” button. If the connection is active, a message will appear saying “Success.” If there is a problem, the message will say “Failed.” Check to see that the user has entered all the information regarding their backup server correctly, and that there is a live internet connection. Also, check to see that the backup server is online. When you have entered the data fields, click the Save button in the bottom right-hand corner of the page.

7.1.9.5 When you are ready to backup the data, click the “Start Backup” button to begin a transfer.

7.1.9.6 After successful entering of the information, click “Finish” in the lower right corner.
7.1.10 **Configuration History tab**

7.1.10.1 This tab allows the user to see what configuration changes have been made to an Sentry-RMS, and who made the changes (see Figure 69).

![Figure 69 - Configuration history](image)

7.1.10.2 The changes that were made over the past few minutes will appear in the list.

7.1.10.3 In order to export these settings to another instance of an Sentry-RMS setup, or to Export this information to the correlated setup of the OICT of this same Sentry-RMS, click on the first tab: Configuration tool settings. Follow the instructions for Exporting configurations found at the beginning of this manual.

7.1.11 **Replacing the SCT configuration cable with the Primary Network cable**

7.1.11.1 The configuration of the SCT is complete. If the Maintenance Port was used for configuring the SCT, the computer’s Ethernet cable can be replaced with the network cable connecting to the site’s network via either the primary or secondary
Ethernet port based on the SCT settings. The Camera 3 Ethernet cable POE splitter can now be connected as previously shown (Mounting Additional Cameras).

7.1.1.2 The user is now able to begin with configuring the OICT.

7.2 Event Viewer – Description and Usage

7.2.1 Logging in to Event Viewer

7.2.1.1 From the SCT, click the Event Viewer Tab. Or, in a new browser window, go to the Sentry-RMS IP address, and click the Event Viewer link. See Figure 70.

![Figure 70 - Opening screen SCT](image)

7.2.1.2 The Event Viewer has four tabs: State of Health (SoH), Alarms and Alerts, Log, and allows the user to go back to the Sentry-RMS Configuration Tool (SCT). Preferred language choice is also found on the SoH tab (see Figure 71).

![Figure 71 - Event Viewer State of Health tab](image)
7.2.2 **State of Health**

7.2.2.1 The first tab in the Event Viewer, called the State of Health (SoH) tab will show the viewer a real-time snapshot of the configured Sentry-RMS device. When the user clicks on the arrow to the right of an event in orange, or red, more details will be found regarding the event, including Status, Event, Event time, and whether the event has been acknowledged (see Figure 72).

![Figure 72 - Expanded view of State of Health](image)

Figure 72 - Expanded view of State of Health
7.2.3 **Alarms and Alerts tab**

7.2.3.1 The Alarms and Alerts tab shows the user a historical record of the configured Sentry-RMS devices. Here, details can be found regarding past events, including Event date and time, the name of the Component as it was named by the authorized users, Status, Event Type, Event, and details (see Figure 73). For alarm events, there are hyperlinks to allow the user to view the video clip surrounding the event in a web browser. To view the video, simply click the link.

![Figure 73 - Alarms and Alerts tab](image)

7.2.3.2 Notice that the bottom right of the screen includes a way to search for a range of days. Complete the preferred date ranges, and click on the search icon. See Figure 74.

![Figure 74 - Download alarms and alerts history screen](image)
7.2.3.3 The results of the search will appear similar to Figure 75. If the user wants to download a history of this date range of events, the user can click on the “Download history” button (see previous Figure 74). An Excel .csv file will be downloaded onto the computer.

Figure 75 - Alarms and alerts history
7.2.4 Log tab

7.2.4.1 The Log tab shows the user a historical record of the configured Sentry-RMS device. Here, details can be found regarding past events, including Event date and time, Status, Event Type, Event, and details. Additionally, the Log tab shows other actions taken such as Application Initialization completion and UART Message Received. These events do not have an event type such as Alarm, Alert, or Normal (see Figure 76).
Figure 76 - Log, including events that are not alarms or alerts
7.2.4.2 As with the Alarms and Alerts tab, the bottom right of the screen includes a way to search for a range of days. Searching and downloading history on this tab is completed the same way as with the Alarms and Alerts tab.

7.2.4.3 If the user wants to download a history of this date range of events, the user can click on the “Download history” button. An Excel .csv file will be downloaded onto the computer (see Figure 77).

![Download all events from Log history](image)

Figure 77 - Download all events from Log history

7.3 **Continue with Operator Interface Configuration Tool (OICT) Manual**

7.3.1.1 At this stage, configuration of the Sentry-RMS is complete. The user should now configure the monitoring stations. See the OICT Manual for instructions on how to configure the monitoring stations.
8 Technical Specifications

8.1 Electrical Requirements
120 VAC, 60Hz, 2 A

8.2 Water ingress protection rating
NEMA 4: provide a degree of protection against dust, water droplets, and splashing water

8.3 Storage Temperature
The Sentry-RMS storage and shipping temperature range is -45° F to +145° F. The backup battery must be removed during storage and shipping.

8.4 Operating Temperature
The Sentry-RMS operating temperature range is 20° F to 120° F.

8.5 Atmospheric Pressure (Altitude)
The Sentry-RMS is intended for operation up to 2,000 meters above sea level.

8.6 Humidity
The Sentry-RMS can operate in an environment of 20 to 85 percent relative humidity, non-condensing, throughout its life.

9 Maintenance & Servicing
The Sentry-RMS contains self-monitors to determine if the equipment is functioning correctly. Refer to State of Health tab in software. The Sentry-RMS is intended only for indoor use.

⚠️ Authorized Service Personnel must disconnect power using wall circuit breaker prior to performing any service or repair on this equipment.
9.1 Radiation Detector Replacement Instructions

9.1.1 Radiation Detector Removal
Remove Screws (V031946) and Washers (V032306) from Radiation Detector Cover (V031747).

Figure 78: Remove Screws and Washers
Disconnect Radiation Detector Harness (V030231) as shown (figure shows harness already disconnected).

Figure 79: Disconnect Radiation Detector Harness
Remove Six Screws (V030152) from Radiation Detector PCBA (V028535) as shown in Figure 80 (figure shows screws already removed).

Figure 80: Remove Six Screws
The figure below shows Radiation Detector PCBA (V028535) removed. Make sure to leave thermal gap pad attached.

Figure 81: Radiation Detector PCBA Removed
9.1.2 Radiation Detector Cover Installation
Attach Radiation Detector PCBA Board (V028535), Routing wire between the two top standoffs and Tighten Screws (V030152) to 0.16 N*m (1.4 in*lb).

Figure 82: Radiation Detector Installed onto Hot Plate
Connect 1 end of Radiation Detector Harness (V030231) to J4 of Radiation Detector PCBA (V028535) as shown below in Figure below.

Figure 83: Radiation Detector Harness Connected to Radiation Detector
Figure 84. Radiation Detector Cover, Hardware, and Enclosure Lid Assembly
Place Radiation Detector Cover (V031747) over Radiation Detector PCBA (V028535), with Radiation Detector Harness (V030231) and TEC Harness (V030711) exiting through the notch in Radiation Detector Cover (V031747).

Secure Radiation Detector Cover (V031747) with Washers (V032306) and Screws (V031946) as shown below in Figure 85. Take care not to overtighten Screws (V031946).
9.2 Instructions for Cleaning

Dust cameras and equipment as needed with dry duster, recommended weekly. Do not spray with water or harsh cleaning chemicals.
9.3 Service and Repair

In order to guarantee safe operation and proper functionality, all servicing and repair must be performed by the manufacturer. Replacement of batteries and fuses may be performed by D-tect Systems authorized service personnel or trained 3rd party installer/electrician. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

9.4 Contact Information

SentryRMS warranty support from D-tect Systems can be received by phone at 801-260-4075 or email at SentryRMSsupport@dtecsystems.com. D-tect will respond to email or voice messages within 24 hours, 365 days a year.

NOTE: Please contact D-tect Systems for approval prior to shipping. Ship to:
D-tect Systems
313 W. 12800 South, Suite 311
Draper, UT 84020

9.5 Warranty

D-tect Systems will provide a three-year warranty to PNNL from the date of shipment from the PNNL warehouse.

9.6 Replacement Battery

The sealed lead acid battery should only be replaced by a CSB Battery Technologies part number HR1251WF2FR. When end of useful battery life is achieved, recycle battery at approved local recycling facility.

9.7 Replacement Fuses Specifications

Fuse Located in Terminal Block
Littlefuse 0312003.HXP 3A 250VAC

Fuse located on main board PCB:
Littlefuse 0297015.WXNV FUSE AUTO 15A 32VDC BLADE MINI
9.8 Sentry-RMS Open Ports

Listed below are the open ports of the Sentry-RMS. Note that OIS monitors do not communicate across standard NAT devices without a VPN.

- **OIS Monitor:**
 - Internet Key Exchange (IKE) – UDP port 500
 - Encapsulating Security Payload (ESP) – IP protocol 50

- **RMS Site Inbound**
 - CHCT:
 - HTTP – TCP port 80
 - HTTPS – TCP port 443
 - Other:
 - SSH – TCP port 22 (optional – only for maintenance use outside the normal web configuration tools)

- **RMS Site Outbound**
 - SMTP: (optional – only if configured for email notifications) default UDP and TCP port 25 (this port depends on their configuration)
 - LDAP (optional – only if configured for Windows Domain authentication): default TCP port 389 (this port depends on their configuration)
 - RSYNC (optional – only if configured for data backups)
 - TCP port 873
 - NTP, time synchronization (optional, time will also be synchronized from Monitoring stations)
 - UDP port 123

9.9 Radiation Detection Procedure

If unsafe radiation levels are detected, follow your company policies concerning procedures and contact appropriate individuals.